Optimizing OCR Error Correction of Historical Newspapers in Hebrew using Neural Networks and Crowdsourcing / Omri Suissa

Abstract

In the last few decades, paper-based documents such as books and newspapers are digitized using

digitalization technology called OCR (optical character recognition). These resources are essential

both for research and preservation of cultural heritage. In numerous digital humanities projects,

there is a need to analyze paper-based documents automatically. The first step towards this goal is

to use an OCR to digitize paper-based documents. Unfortunately, OCRed historical texts still

contain a significant percentage of errors that undermine further analysis and preservation. Neural

networks have shown great success in solving Natural Language Processing (NLP) tasks, including

spell checking. However, neural network training requires a vast amount of training data (pairs of

input and output sentences) that does not exist in Hebrew. This is one of the reasons that in Hebrew

there is limited research and no optimal neural network structure for fixing OCR errors.

This research examines how to optimize neural networks learning process for OCR error correction

in Hebrew historical newspapers. To achieve this goal three aspects were tested: creating training

dataset using crowdsourcing, optimizing the neural network structure for the OCR error correction

task and the ability of the neural network to generalize for different content domains. Finally, a

comparison between different OCR error correction algorithms (humans, industry-leading spell

checks and neural networks) was made.

To optimize dataset creation, a crowd-sourcing experiment was launched using Amazon's

Mechanical Turk¹ (AMT). This experiment tested the unique aspects of OCR post correction

(methodology, scanned image and text length); while acknowledging this domain's limitations

such as lack of golden standard, OCR unique spelling errors and segmentation errors. Every dataset

item included an "OCRed" texts (with common OCR errors), "scanned image" and a gold standard

1 https://www.mturk.com/

Library of Information Science Bar-Ilan University, Ramat-Gan, Israel Email: Ruthi. Tshop@biu.ac.il (correct) text. The experiment tested the effect of the methodology of the proofing process, the

effect of the scanned image and the effect of the text's length. Three measurements were developed

to assess three strategies: quality, time efficiency, and effectiveness. A total of 753 crowd-workers

fixed 3796 texts using AMT platform and a dedicated site that was built for the experiment. Using

quality measurement, we found that when segmentation allows it, medium length texts are the

most efficient length to fix (comparing to long or short texts) and should be fixed using a sub-tasks

methodology (Find-Fix) accompanied with the scanned image. Surprisingly, when segmentation

prevents splitting long text, we found that the straightforward (naive) one-shot proofing achieves

better quality. Moreover, long texts and one-shot proofing

methodology always wins when it comes down to time efficiency. Finally, when balancing

between

quality and time efficiency (effectiveness), we found that short texts are the most cost-effective

should be used with a sub-tasks' methodology (Find-Fix). When segmentation prevents from

splitting into short texts, the strategy becomes more complex. This paper results help reduce the

complexity of the crowdsourcing strategy choice and have important practical implications for

many digital humanities projects which aim to analyze the content of OCRed document

collections.

Optimizing the neural network's structure was done by comparing several aspects that influence

the network's accuracy: depth, regulation (dropout), number of features, layer type, dataset size

(epoch size), batch size and bidirectional learning. A series of experiments was conducted on an

artificial dataset that was generated from the Ben Yehuda Project² (the Hebrew equivalent to

Gutenberg³ project). The optimized network improved the accuracy (compared to the baseline

network) by 3% (from 85% to 88%) and the end result precision by 4%. The optimized network

was based on four bidirectional LSTM layers with 500 hidden size, 20% dropout, 250,000

examples in every epoch and 256 examples in every batch.

Using the strategies developed in the crowd-sourcing experiment, another experiment was

² https://bybe.benyehuda.org/

³ https://www.gutenberg.org/

launched using articles from the most extensive historical Hebrew newspapers collection - JPress⁴.

Seventy-five students corrected 150 articles. Using this dataset, a Hebrew specific OCR error

injection algorithm was designed, and another artificial dataset was created based on Ben Yehuda

Project texts. The optimized network was trained on this dataset as well. To assess the network's

sensitivity to the content domain, the network was trained on a Bible-based dataset (using the same

error injection algorithm). Both datasets were tested with different noise ratios. These experiments

show that the biblical language is too far from the modern Hebrew language to allow the network

to learn and correct modern OCR errors. In addition, high noise ratio prevented the network from

learning, and a very little (10%) noise was needed to achieve optimal learning.

To conclude, a comparison between the different types of error correction algorithms (human

subjects, leading spell checkers by Microsoft and Google and the optimized neural networks) was

performed. Even with the latest advancements in deep learning, humans were able to generalize

far better when fixing OCR errors in an unfamiliar content genre. Human subjects' quality

(contribution) was 15 times greater than the neural network, even after the optimization of the

structure and the datasets. However, comparing to industry-leading spell checkers, the neural

network improved the quality (contribution) and the accuracy while the industry-leading spell

checkers introduced more errors than corrections.

These results are another step towards creating automated tools for historical Hebrew OCR

correction and toward historical cultural preservation. Researches can use these results to reduce

the complexity when designing neural networks for the OCR error correction and to improve the

OCR process itself.

The results of this research can be a starting point for other researches in the field of OCR post

correction in Hebrew, spell checking in Hebrew (and other languages) and OCR accuracy

improvement. Moreover, the optimization of crowdsourcing and neural network structure can be

continued using aspects that were not tested in this research and by comparing to other content

domains.

⁴ http://web.nli.org.il/sites/JPress/Hebrew/Pages/default.aspx

Library of Information Science Bar-Ilan University, Ramat-Gan, Israel Email: Ruthi. Tshop@biu.ac.il

ט"ט סוי.או משע"ט 006.424

9926564169405776